It is well known that a second-countable space is separable. For the proof consider a second-countable space \(X\) with countable basis \(\mathcal{B}=\{B_n; n \in \mathbb{N}\}\). We can assume without loss of generality that all the \(B_n\) are nonempty, as the empty ones can be discarded. Now, for each \(B_n\), pick any element \(b_n\). Let \(D=\{b_n;n \in \mathbb{N}\}\). \(D\) is countable. We claim that \(D\) is dense in \(X\). To see this let \(U\) be any nonempty open subset of \(X\). \(U\) contains some \(B_p\), hence \(b_p \in U\). So \(D\) intersects \(U\) proving that \(D\) is dense.
In this article, I consider real valued functions \(f\) defined on \((0,+\infty)\) that converge to zero, i.e.:
\[\lim\limits_{x \to +\infty} f(x) = 0\] If \(f\) is differentiable what can be the behavior of its derivative as \(x\) approaches \(+\infty\)?
Let’s consider a first example:
\[\begin{array}{l|rcl}
f_1 : & (0,+\infty) & \longrightarrow & \mathbb{R} \\
& x & \longmapsto & \frac{1}{x} \end{array}\] \(f_1\) derivative is \(f_1^\prime(x)=-\frac{1}{x^2}\) and we also have \(\lim\limits_{x \to +\infty} f_1^\prime(x) = 0\). Let’s consider more sophisticated cases! Continue reading Differentiable functions converging to zero whose derivatives diverge (part1)→
A classical way to prove that an integral polynomial \(Q \in \mathbb{Z}[X]\) is irreducible is to prove that \(Q\) is irreducible over a finite prime field \(\mathbb{F}_p\) where \(p\) is a prime.
In this article, I will describe a subset of the plane that is a connected space while not locally connected nor path connected.
Let’s consider the plane \(\mathbb{R}^2\) and the two subspaces:
\[A = \bigcup_{n \ge 1} [(0,0),(1,\frac{1}{n})] \text{ and } B = A \cup (\frac{1}{2},1]\] Where a segment noted \(|a,b|\) stands for the plane segment \(|(a,0),(b,0)|\). Continue reading A connected not locally connected space→
Let’s consider a polynomial of degree \(q \ge 1\) over a field \(K\). It is well known that the sum of the multiplicities of the roots of \(P\) is less or equal to \(q\).
In that article, I provide basic counterexamples on sequences convergence. I follow on here with some additional and more advanced examples.
If \((u_n)\) converges then \((\vert u_n \vert )\) converge?
This is true and the proof is based on the reverse triangle inequality: \(\bigl| \vert x \vert – \vert y \vert \bigr| \le \vert x – y \vert\). However the converse doesn’t hold. For example, the sequence \(u_n=(-1)^n\) is such that \(\lim \vert u_n \vert = 1\) while \((u_n)\) diverges.
If for all \(p \in \mathbb{N}\) \(\lim\limits_{n \to +\infty} (u_{n+p} – u_n)=0\) then \((u_n)\) converges?
The assertion is wrong. A simple counterexample is \(u_n= \ln(n+1)\). It is well known that \((u_n)\) diverges. However for any \(p \in \mathbb{N}\) we have \(\lim\limits_{n \to +\infty} (u_{n+p} – u_n) =\ln(1+\frac{p}{n+1})=0\).
The converse proposition is true. Assume that \((u_n)\) is a converging sequence with limit \(l\) and \(p \ge 0\) is any integer. We have \(\vert u_{n+p}-u_n \vert = \vert (u_{n+p}-l)-(u_n-l) \vert \le \vert u_{n+p}-l \vert – \vert u_n-l \vert\) and both terms of the right hand side of the inequality are converging to zero. Continue reading Counterexamples on real sequences (part 2)→
We raise here the following question: “can a vector space \(E\) be written as a finite union of proper subspaces”?
Let’s consider the simplest case, i.e. writing \(E= V_1 \cup V_2\) as a union of two proper subspaces. By hypothesis, one can find two non-zero vectors \(v_1,v_2\) belonging respectively to \(V_1 \setminus V_2\) and \(V_2 \setminus V_1\). The relation \(v_1+v_2 \in V_1\) leads to the contradiction \(v_2 = (v_1+v_2)-v_1 \in V_1\) while supposing \(v_1+v_2 \in V_2\) leads to the contradiction \(v_1 = (v_1+v_2)-v_2 \in V_2\). Therefore, a vector space can never be written as a union of two proper subspaces.
We now analyze if a vector space can be written as a union of \(n \ge 3\) proper subspaces. We’ll see that it is impossible when \(E\) is a vector space over an infinite field. But we’ll describe a counterexample of a vector space over the finite field \(\mathbb{Z}_2\) written as a union of three proper subspaces. Continue reading A vector space written as a finite union of proper subspaces→
I’m used to publish mathematical counterexamples. But following January 7th attack in Paris against “Charlie Hebdo” journalists, my mind is busy with other topics.
Despite the willingness of some zealots, freedom of speech is and will remain alive.